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In recent years, there have been numerous examples of twisted bilayer systems that host remark-
able physical properties that are not found in their untwisted counterparts. Motivated by this, we
study the properties of twisted bilayers of the Kitaev honeycomb model in the Abelian spin liquid
phase. We show that for strong, short-ranged, interlayer interactions, a super-lattice of non-Abelian
defects forms in the twisted bilayer system. These non-Abelian defects are wormhole-like genons
that allow anyons from one layer to tunnel to the other layer. We find that when a magnetic field is
applied to the system, the low energy dynamics of the twisted bilayer system can be mapped onto
four quantum Ising models arising from the degrees of freedom localized on the genon defects. At
small twist angles, the Ising models are in a trivial paramagnetic phase, and at large twist angles,
they are in a ferromagnetic phase.

I. INTRODUCTION

A quantum spin liquid is an exotic state of strongly
correlated spins, that does not break any symmetries1.
The study of spin liquids began in 1973 with Anderson’s
work on the resonating valence bond state2. Since then,
spin liquids have been an active area of theoretical and
experimental research. In particular, it has been shown
that topological order plays a major role in the struc-
ture of these systems3–5. A well known example of a
topologically ordered spin liquid appears in the spin-1/2
Kitaev model6. This model is defined on a honeycomb
lattice with one spin-1/2 at each vertex of the lattice.
The Hamiltonian is given by

HKitaev =− Jx
∑

〈r,r′〉∈x

σxrσ
x
r′ − Jy

∑
〈r,r′〉∈y

σyrσ
y
r′

− Jz
∑

〈r,r′〉∈z

σzrσ
z
r′ , (1)

where in the first sum, 〈r, r′〉 ∈ x indicates that the sites
r and r′ are neighboring sites that are connected by an
x-oriented link and similarly for y and z (see Fig. 1). The
Kitaev model can be exactly solved by decomposing each
spin into 4 Majorana fermions. Depending on the relative
strengths of the interactions, Jx, Jy, and Jz, there are
two phases of Eq. 1. First, there is a gapped Z2 Abelian
topologically ordered spin liquid phase. Second, there is
a gapless phase of (effectively) free Majorana fermions.
If one adds an external magnetic field, the free Majorana
fermions can acquire a gap such that the system enters a
third phase that has non-Abelian topological order.

Recently, it has been proposed that α-RuCl3 can re-
alize the non-Abelian spin liquid state of the Kitaev
model7–13. Crystals of α-RuCl3 are made up of layers
of Ru and Cl atoms, which form 2D honeycomb lattices.
Since α-RuCl3 has this honeycomb structure, as well as
strong spin-orbit coupling, it is an appealing candidate
to realize the Kitaev model. Other candidate materials

Figure 1: The honeycomb lattice with primitive vectors a1 and
a2, and x, y, and z-oriented links.

include Na2IrOs3, (α, β, γ)-Li2IrO3, and H3LiIr2O6
14–18.

In a completely disparate physical context, twisted
honeycomb bilayer systems have also become an active
area of research. When one layer of a bilayer honey-
comb lattice is twisted with respect to the other layer,
a moiré pattern forms, and a super-lattice structure can
emerge when this moiré pattern is commensurate with
the original honeycomb lattice. Research on twisted bi-
layer systems has been primarily centered on twisted bi-
layer graphene19–21. In particular, unconventional super-
conductivity has been observed in graphene bilayers that
have been twisted to the “magic angle” of θ ≈ 1.1o22,23.
Understanding magic angle twisted bilayer graphene re-
mains an exciting open theoretical and experimental
question24,25.

Motivated by these advances in the studies of spin
liquids and twisted bilayer systems, we will consider
commensurate twisted bilayers of the Kitaev honeycomb
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model where both layers are tuned into the Abelian
spin liquid phase. Our analysis will focus on the effects
of strong, short-ranged, interlayer couplings. By con-
structing an effective Hamiltonian, we show that in the
regime of strong interlayer couplings, a super-lattice of
non-Abelian defects forms in the twisted bilayer system,
despite the underlying phase being Abelian in nature.
These non-Abelian defects can be thought of as worm-
hole-like “genons”26, which allow fractionalized quasipar-
ticles (anyons) to pass from one layer to the other. If no
magnetic field is present, these defects result in a ground
state degeneracy that is exponential in the size of the
system. This ground state degeneracy corresponds to the
existence of non-trivial zero energy loop operators that
enclose or pass through the wormhole defects. When a
weak magnetic field is applied to the system, the ground
state degeneracy is split. To understand this splitting
we construct an effective Hamiltonian for the aforemen-
tioned loop operators, and we show that the resulting
low energy dynamics of the twisted bilayer system can be
mapped onto an effective spin model consisting of four de-
coupled 2D quantum Ising models. These quantum Ising
models have position depending Ising couplings as well
as position dependent transverse magnetic field terms.
Furthermore, we show that the resulting phases of the
Ising models depend on the twist angle of the bilayers.
At small twist angles, the Ising models favor a trivial
paramagnetic phase, while at large twist angles, a ferro-
magnetic phase of the effective spin degrees of freedom is
favored.

This paper is organized as follows. In Section II we re-
view the Abelian phase of the Kitaev honeycomb model.
In Section III we present the bilayer model and analyze
the twisted Kitaev bilayers. We show that at strong cou-
pling, the system hosts a lattice of non-Abelian defects.
In Section IV we analyze the dynamics of the defect lat-
tice in the presence of a magnetic field, and show that
the low energy physics is well described by an effective
spin model of four quantum Ising models. Furthermore,
we show that the phases of the Ising models depend on
the twist angle between the bilayers. We conclude our
results in Section V and discuss possible extensions.

II. REVIEW: ABELIAN PHASE OF THE
KITAEV MODEL

To begin, we will review the Abelian phase of the Ki-
taev model (Eq. 1). In our analysis we will take Jx,
Jy, and Jz to all be positive. For a full analysis, see Ki-
taev’s seminal paper on the model6. It is known that the
Kitaev model is in a Z2 Abelian topologically ordered
phase if Jz > Jx + Jy. This can be shown explicitly by
considering the case where Jz � Jx, Jy, and then apply-
ing perturbation theory by treating the Jx and Jy terms
as perturbations. When Jx = Jy = 0, the spins that
are connected by a z-oriented links are aligned, i.e., if
〈r, r′〉 ∈ z, then 〈σzr 〉 = 〈σzr′〉. Because of this, we can

Figure 2: The locations of the effective spins (i, j, k, and l) that
make up the plaquette p.

consider each z-oriented link to be a single spin-1/2. Let
us consider a single z-oriented link, i, that connects two
sites r and r′. The Pauli matrices for the effective spin-
1/2 located at i are:

σ̄zi ≡ σzr = σzr′ ,

σ̄xi ≡ σxrσxr′ = σyrσ
y
r′ ,

σ̄yi ≡ σ
x
rσ

y
r′ = σyrσ

x
r′ .

(2)

To leading order in perturbation theory, the effective
Hamiltonian for these spin-1/2s is

HA = −Jeff

∑
p

σ̄zi σ̄
y
j σ̄

z
kσ̄

y
l , (3)

where p is the plaquette formed by the effective spins at
sites i, j, k, and l (see Fig. 2), and to leading order

Jeff =
J2
xJ

2
y

16J3
z

. To bring Eq. 3 into a more familiar form,

we will define a new square lattice where the effective
spins lie on the links of the square lattice (see Fig. 3). If
we appropriately rotate the effective spins of the square
lattice, the effective Hamiltonian becomes,

HTC = −Jeff

∑
v

∏
l∈v

σ̄xl − Jeff

∑
p

∏
l∈p

σ̄zl , (4)

where the two sums are over the vertices v and plaque-
ttes p of the square lattice, and the products are over the
links that make up a given vertex or plaquette. Eq. 4
is the well known Hamiltonian for the toric code27. If
we return to the original honeycomb lattice, we see that
vertices and plaquettes of the square lattice in Fig. 3 cor-
respond to alternating rows of plaquettes in the original
honeycomb lattice.

We will now include a quick summary of the features of
the toric code model27. All terms in Eq. 4 commute with
each other, and square to unity. Thus the ground state is
achieved in the quantum number sector that minimizes
each term. Since Jeff > 0, this occurs when 〈

∏
l∈v σ̄

x
l 〉 =

〈
∏
l∈p σ̄

z
l 〉 = 1 for all vertices v and plaquettes p in the

system. The spectrum of Eq. 4 is gapped, and when the
system is defined on a system of genus g, there are 4g

degenerate ground states.
The quasiparticles of Eq. 4 are typically referred

to as “anyons” due to their unusual statistical prop-
erties. There are three types of non-trivial toric code
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anyons: e anyons, which correspond to a vertex v where
〈
∏
l∈v σ̄

x
l 〉 = −1, m anyons, which correspond to a pla-

quette p where 〈
∏
l∈p σ̄

z
l 〉 = −1, and ψ anyons, which are

the fusion of an e and m anyon. The e and m anyons are
both bosons, and ψ is a fermion. The statistical angle
between the e and m is π. The fusion rules of the anyons
are e × e = 1, m ×m = 1 and e ×m = ψ, and all toric
code anyons are their own anti-particles.

When a pair of anyons is created, they are connected
by a string operator. Annihilating this pair of anyons
causes the string to close, forming a loop that we will re-
fer to as an anyon loop. The operators that create these
anyon loops commute with the Hamiltonian in Eq. 4, and
in the language of gauge theories, the anyon loops are the
gauge invariant Wilson loops of the theory. There are two
types of anyon loops. First there are contractible anyon
loops that can be smoothly deformed into a single point.
All contractible anyon loops commute with all other con-
tractible anyon loops. Indeed, the toric code ground state
can be interpreted as a condensate of these contractible
anyon loops28. Second, on a lattice with genus greater
than zero, there are also non-contractible anyon loops
that cannot be smoothly deformed to a point. In gen-
eral, non-contractible anyon loops do not commute with
each other. The algebra of non-contractible anyon loops
leads to the aforementioned ground state degeneracy on
surfaces with genus greater than zero.

Dynamics for the anyons can be added to Eq. 4 by
including a magnetic field term:

Hmag = −
∑
l

[hxσ̄
x
l + hyσ̄

y
l + hzσ̄

z
l ]. (5)

Comparing Eqs. 4 and 5, we note that the hx term cre-
ates (or removes) a pair of excited states at neighboring
plaquettes, i.e., creates a pair of m anyons. Similarly the
hz term creates a pair of e anyons, and the hy term cre-
ates a pair of ψ anyons. By acting multiple times with
these operators, anyons can be moved around the sys-
tem. Provided that the strength of the magnetic field is
significantly smaller than the bulk gap of the system, the
effects of Eq. 5 can be studied perturbatively around the
ground state of Eq. 4 in inverse powers of the system
gap.

III. TWISTED BILAYERS AND THE DEFECT
LATTICE

The staring point for our analysis will be two copies of
the Kitaev model on a honeycomb lattice. We will label
the Pauli matrices acting on the top layer as σ↑ and the
Pauli matrices acting on the bottom layer as σ↓. The
Hamiltonian is given by:

Hbilayer =− Jx
∑

〈r,r′〉∈x

σx↑,rσ
x
↑,r′ − Jy

∑
〈r,r′〉∈y

σy↑,rσ
y
↑,r′

− Jz
∑

〈r,r′〉∈z

σz↑,rσ
z
↑,r′ + (σ↑ ↔ σ↓). (6)

Figure 3: The original honeycomb lattice (black), and the new
square lattice (red).

We are interested in the Abelian phase of the model
where Jz � Jx, Jy for both layers. The interlayer cou-
plings will take the form of a short-ranged, antiferromag-
netic, Heisenberg interaction between the spins of the two
layers:

Hinter = K
∑
r∈C

~σ↑,r · ~σ↓,r (7)

where K is positive and C is the set of all coincident ver-
tices of the two layers. Since the magnetic interaction is
short-ranged, we will assume that spins only at the co-
incident sites of the bilayer system (r ∈ C) are coupled.
If the bilayer is untwisted, then all sites of the bilayer
lattice will be coincident. If the bilayer is twisted com-
mensurately only certain sites will be coincident. This
will be discussed in more detail in Sec. III B. If K is
much smaller than the relevant energy scales of the model
(K � Jα, α = x, y, z), then Eq. 7 can be treated as a
perturbation to Eq. 6. However, since each layer in Eq.
6 is gapped, this perturbation is irrelevant at weak cou-
pling. We thereby do not expect such a perturbation to
change any universal features associated with the decou-
pled bilayers. At strong coupling (K � Jα), it is clear
that to zeroth order, the spins at site r will form a sin-
glet. Higher order corrections are more intricate and will
be discussed further below.

Now we shall analyze the coupled bilayer systems in
more detail. As noted before, the interlayer interactions
are irrelevant at weak coupling, and, as such, we will
focus on the limit of strong interlayer coupling.

A. Untwisted Bilayers

Before considering twisted bilayers, we will first con-
sider untwisted bilayers (also referred to as AA stacked
bilayers). When the bilayer is untwisted, all sites of the
bilayer system are coincident, and the interlayer coupling
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is given by

Hinter =
∑
r

K~σ↑,r · ~σ↓,r (8)

where the sum is over all sites of the honeycomb lattice
bilayer. As before, at weak coupling, K � Jα, the inter-
layer coupling is irrelevant, due to the bulk gap, and the
system resembles two decoupled copies of toric code. In
the strong coupling limit, K � Jα, the two spins at each
site form a singlet, and the system is a trivial magnet
with interlayer dimerization. The intermediate coupling
regime may prove to be interesting, but it is beyond the
scope of this paper. In particular, determining the na-
ture of the phase transition that connects the weak and
strong coupling regimes may be a topic for future work.
A related analysis of untwisted Kitaev bilayers in the
non-Abelian phase has been done by Seifert et. al.29.
Similarly, they find that at weak interlayer coupling the
system is a non-Abelian spin liquid, and at strong cou-
pling the system forms trivial interlayer singlets.

B. Commensurate Twist Angles

Having established that the untwisted Kitaev bilayer
system is trivial at strong coupling, we will now turn our
attention to the more interesting situation where the bi-
layers are twisted. In general, there are two types of twist
angles: commensurate or incommensurate with the un-
derlying honeycomb lattice. When the twist angle is com-
mensurate, the twisted bilayer system has a super-lattice
structure, and translational symmetry with respect to
this super-lattice. When the twist angle is incommen-
surate, there is no such super-lattice structure or trans-
lational symmetry. In this study, we are interested in
this super-lattice, and so we will restrict our attention to
commensurate twist angles.

The set of commensurate twist angles is given by the
equation20,30

cos(θ(m, r)) =
3m2 + 3mr + r2/2

3m2 + 3mr + r2
, (9)

where m and r are co-prime integers, and 0 < θ < π/3.
At these twist angles, only certain sites of the bilayer
system will be coincident. These coincident sites form a
super-lattice (see Fig. 4). The primitive vectors of this
super-lattice, t1 and t2, are:

i. If gcd(r, 3) = 1,[
t1

t2

]
=

[
m m+ r

−m− r 2m+ r

] [
a1

a2

]
, (10)

ii. If gcd(r, 3) = 3,[
t1

t2

]
=

[
m+ r/3 r/3
−r/3 m+ 2r/3

] [
a1

a2

]
, (11)

where a1 and a2 are the primitive vectors of the origi-
nal honeycomb lattice (see Fig. 1). When gcd(r, 3) = 1,

Figure 4: The twisted honeycomb lattice bilayer for
θ(1, 3) ≈ 38.21o (left) and θ(1, 1) ≈ 21.79o (right). The coincident

lattice points are shown in black. These points form either a
honeycomb lattice (left) or triangular lattice (right).

the coincident sites form a triangular lattice, and when
gcd(r, 3) = 3, the coincident sites form a honeycomb lat-
tice. These two super-lattice patterns are referred to as
sub-lattice exchange odd (SE-odd) and sub-lattice ex-
change even (SE-even) respectively.

C. Effective Action at a Single Site

As noted, when the twist angle is commensurate, only
certain isolated sites of the bilayer lattice are coincident.
Under the assumption that the interlayer couplings are
short-ranged, only the pairs of spins at these coincident
sites will couple to each other. Intuitively, and as in-
dicated in Eqs. 10 and 11, the distance between the
coincident sites of the twisted bilayer system is greater
than the original lattice spacing of the honeycomb lat-
tice. Because of this, and the fact that the bulk of the
Kitaev bilayer system is gapped, spins at different co-
incident lattice sites will only weakly interact. For this
reason, we will first study a system where only a single
pair of spins is coupled.

For a bilayer system where only a single pair of spins
is coupled, the interlattice coupling is given by

Hinter = K~σ↑,d · ~σ↓,d, (12)

where d is a single coincident site of the bilayer system
(see Fig. 5). To study the the strong coupling limit of
Eq. 12 (K � Jα) we will construct an effective Hamil-
tonian perturbatively in powers of Jα/K. Before we do
this, we will first review the procedure for constructing an
effective Hamiltonian31. For a Hamiltonian of the form
H = H0 + V , we want to find the effective Hamiltonian
that acts only on the space of ground states of H0. This
is done perturbatively in powers of V . Explicitly, the
matrix elements of the effective Hamiltonian are given
by

〈a|Heff|b〉 = E0δa,b + 〈a|V |b〉+
∑
γ

〈a|V |γ〉〈γ|V |b〉
E0 − Eγ

+ ...,

(13)

where E0 is the ground state energy of H0, |a〉 and |b〉
are ground states of H0, and the sum is over all excited
states |γ〉 of H0.
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Figure 5: The lattice sites that interact with the coupled spins
(black) at site d.

Since K � Jα we will treat the interlayer coupling in
Eq. 12 as H0, and the intralayer couplings in Eq. 6 as V .
In the ground state of Eq. 12, the two spins at site d will
form a singlet, and all other spins in the bilayer system
will be free. To leading order, the effective Hamiltonian
that acts on the free spins is given by

Heff = −Jx
′∑

〈r,r′〉∈x

σx↑,rσ
x
↑,r′ − Jy

′∑
〈r,r′〉∈y

σy↑,rσ
y
↑,r′

−Jz
′∑

〈r,r′〉∈z

σz↑,rσ
z
↑,r′ + (σ↑ ↔ σ↓)

−Jt,zσz↑,d+zσ
z
↓,d+z − Jt,zσz↑,d+xσ

z
↓,d+x

−Jt,yσy↑,d+yσ
y
↓,d+y, (14)

where the primed sum is over all sites r, r′ 6= d, and d+α
is the site connected to d by an α-oriented link (see Fig.

5 for the reference labels). To leading order, Jt,α ∼ J2
α

K .
By using a unitary transformation, we can set Jt,α to be
positive.

Let us compare the effective Hamiltonian in Eq. 14 to
the original Kitaev Hamiltonian (Eq. 1). Away from the
coupled spins, we recover the two original Kitaev models
as expected. Near the coupled spins, we note that the
Jt,z term in Eq. 14 is what one would have if σ↑,d+z

and σ↓,d+z spins were connected by a z-oriented link in
the original Kitaev model. Similarly, the Jt,x(y) term in
Eq. 14 is what one would have if σ↑,d+x(y) and σ↓,d+x(y)

were connected by an x(y)-oriented link. Based on this
intuition, we expect that the interactions in Eq. 12 will
allow excitations from one layer to tunnel to the other
layer. As we shall now show explicitly, this expectation
is correct.

In the Abelian phase, when Jz � Jx, Jy, we can an-
alyze the effects of the interlayer couplings on the rest
of the system by constructing a second effective Hamil-
tonian from the first effective Hamiltonian Eq. 14. For

this second effective Hamiltonian we will treat the Jx, Jy,
Jt,x and Jt,y terms as perturbations. When Jx = Jy =
Jt,x = Jt,y = 0, Eq. 14 becomes

Heff =− Jz
′∑

〈r,r′〉∈z

(σz↑,rσ
z
↑,r′ + σz↓,rσ

z
↓,r′)

+ Jt,zσ
z
↑,d+zσ

z
↓,d+z, (15)

where the primed sum, is over all neighboring sites r and
r′ where 〈r, r′〉 ∈ z and r, r′ 6= d. The Jz terms align
the spins at r and r′, resulting in one effective spin-1/2
for each of the z-oriented links on each layer. We will
refer to the Pauli matrices for these effective spins as
σ̄↑ for the z-oriented links on the top layer and σ̄↓ for
the z-oriented links on the bottom layer. These Pauli
matrices are defined analogously to those in Eq. 2. The
Jt,z term will also align the two spins at d+ z such that
〈σz↑,d+z〉 = 〈σz↓,d+z〉. Using the same logic as in Sec. II,
we can regard the two spins at d+ z as a single effective
spin-1/2. The Pauli matrices for this effective spin are

σ̄zl,d+z ≡ σ
z
↑,d+z = σz↓,d+z,

σ̄xl,d+z ≡ σ
x
↑,d+zσ

x
↑,d+z = σy↑,d+zσ

y
↑,d+z,

σ̄yl,d+z ≡ σ
x
↑,d+zσ

y
↑,d+z = σy↑,d+zσ

x
↑,d+z.

(16)

The ground states of Eq. 15 thereby consist of a free
spin-1/2 for every z-oriented link on both layers that is
not connected to the site d, as well as a free spin-1/2
shared between both layers at d + z. We will now con-
struct a secondary effective Hamiltonian by considering
the effects of Jx, Jy, Jt,x, and Jt,y on the effective spin-
1/2s that make up the ground state of Eq. 15. The
secondary effective Hamiltonian is given by

Heff,2 =− Jeff

′∑
p

[
σ̄z↑,iσ̄

y
↑,j σ̄

z
↑,kσ̄

y
↑,l + (σ̄↑ ↔ σ̄↑)

]
+Ht,d (17)

Ht,d =− J1(σ̄z↑,1σ̄
y
↑,2σ̄

y
↑,8σ̄

z
↓,1σ̄

y
↓,2σ̄

y
↓,8)

− J2(σ̄z↑,2σ̄
y
↑,3σ̄

z
↑,4σ̄

z
↓,2σ̄

y
↓,3σ̄

z
↓,4σ̄

x
l,9)

− J3(σ̄z↑,8σ̄
y
↑,7σ̄

z
↑,6σ̄

z
↓,8σ̄

y
↓,7σ̄

z
↓,6σ̄

x
l,9)

− J4(σ̄z↑,5σ̄
y
↑,4σ̄

z
l,9σ̄

y
↑,6 + σ̄z↓,5σ̄

y
↓,4σ̄

z
l,9σ̄

y
↓,6), (18)

The primed sum indicates a sum over all plaquettes p that
do not neighbor the site d, and i, j, k, and l label the sites
of the effective spins that make up the plaquette p (see
Fig. 2). These plaquettes are made up entirely of either
red or green effective spins in Fig. 6. The subscripts in
Eq 18, correspond to those in Fig. 6. All Ji are positive,

and to leading order, J1 ∼
J2
xJ

2
yJt,xJt,y
J5
z

, J2 ∼
J3
xJ

3
yJt,y
J6
z

,

J3 ∼
J3
xJ

3
yJt,x
J6
z

, and J4 ∼
J2
xJ

2
y

J3
z

.

The first two terms in Eq. 17, describe two indepen-
dent copies of the Abelian phase of the Kitaev model,
i.e., two copies of the toric code. The bulk excitations
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corresponding to these terms are also just two copies of
the toric code anyons, one for each layer. As we shall
show, Ht,d consists of localized tunneling terms that al-
low anyons near d to tunnel between the different lay-
ers. It is straightforward to verify that all terms in Eq.
17 commute, and that the system will be gapped. The
ground state can be found by individually minimizing
each of these terms. As with the unperturbed toric code,
the ground state of Eq. 17 can be interpreted as a con-
densate of contractible anyon loops. The main difference
is that Ht,d allows loops to pass from one layer to the
other.

To explicitly show that Ht,d allows bulk anyons from
one layer to tunnel to the other layer, let us consider
the operator σ̄z↑,2σ̄

z
↓,2, where we have used the subscripts

from Fig. 6. The operator σ̄z↑,2σ̄
z
↓,2 commutes with Ht,d,

but anti-commutes with the σ̄↑ and σ̄↓ plaquette terms
located at P′ in Fig. 6. This means that σ̄z↑,2σ̄

z
↓,2 will

create (or annihilate) a toric code anyon at the plaquette
P′ on both the top and bottom layers. Similarly, σ̄z↑,3σ̄

z
↓,3,

also commutes with Ht,d, and anti-commutes with the
σ̄↑ and the σ̄↓ plaquette terms located at P′′ in Fig. 6.
This means that σ̄z↑,3σ̄

z
↓,3 will create (or annihilate) a toric

code anyon at the plaquette P′′ on both the top and
bottom layers. Since all toric code anyons are their own
anti-particles, these processes allow toric code anyons to
tunnel from one layer to the other.

These tunneling processes can either send e(m) anyons
on one layer to e(m) anyons on the other layer, or send
e(m) anyons on one layer to m(e) anyons on the other
layer. To show this, we first recall that the e and m
toric code anyons are localized on alternating rows of
hexagonal plaquettes of the honeycomb lattice. Without
loss of generality, let us consider the case where the σ̄↑
plaquette term at P′ corresponds to an e anyon, and the
σ̄↑ plaquette at term P′′ corresponds to an m anyon. In
this case, it is possible to have the σ̄↓ plaquette term at
P′ correspond to either an e anyon or m anyon (and the
σ̄↓ plaquette term at P′′ correspond to an m anyon or
e anyon respectively). In the former case, σ̄z↑,2σ̄

z
↓,2 will

tunnel an e anyon on the top layer into an e anyon on
the bottom layer, and σ̄z↑,3σ̄

z
↓,3 will tunnel an m anyon on

the top layer into an m anyon on the bottom layer. In
the latter case σ̄z↑,2σ̄

z
↓,2 will tunnel an e anyon on the top

layer into an m anyon on the bottom layer, and σ̄z↑,3σ̄
z
↓,3

will tunnel an m anyon on the top layer into an e anyon
on the bottom layer. These different types of tunneling
processes will be of interest when studying full twisted
bilayers with coupled spins on all coincident sites.

Regardless of the details of the tunneling processes, we
can confirm that Ht,d allows the non-trivial toric code
anyons of one layer to tunnel into the other layer. Be-
cause of this, Ht,d can be interpreted as a pair of genon
defects26. In a bilayer system, a genon defect is the end
point of a branch cut that connects the two layers. When
an anyon from one layer passes through this branch cut,
it becomes an anyon on the other layer. Since, Ht,d allows
anyons to tunnel from one layer to the other, it consti-

Figure 6: The effective spins contributing to the effective
Hamiltonian around the defect. The red dots are the effective

spins of the top layer and green dots are the effective spins of the
bottom layer. The blue dot is the effective spin that is shared

between the two layers at d+ z.

tutes a single isolated segment of such a branch cut, or
equivalently, a pair of genon defects (one at each end of
the branch cut). Because of this, we will refer to the
defect in Eq. 18 as a “bi-genon” defect.

D. Defect Lattice

We will now turn our attention to the commensurate
twisted Kitaev bilayers, where spins on each coincident
site are coupled. To avoid any effects caused by the
boundaries or non-trivial topology of the lattice, we will
consider the case where each lattice layer is an infinite
plane. As noted before, we will assume that the inter-
layer interactions are significantly short-ranged, so that
only the spins that are located on coincident sites are
coupled. When the bilayer is twisted by a commensurate
twist angle θ(m, r), the interlayer interaction is given by:

Hinter = K
∑
r∈C

~σ↑,r · ~σ↓,r, (19)

where C is the set of coincident sites of the twisted bi-
layer system (black sites in Fig. 4). The sites r ∈ C form
a super-lattice with primitive vectors given by Eq. 10 or
11. Again, we will consider the limit K � Jz. Follow-
ing the same logic as before, we find that the effective
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Hamiltonian for the twisted bilayer system is

Htwist =− Jeff

′∑
p

[σ̄z↑,iσ̄
y
↑,j σ̄

z
↑,kσ̄

y
↑,l + (σ̄↑ ↔ σ̄↑)]

+
∑
r∈C

Ht,r. (20)

Here the primed sum indicates a sum over all plaquettes p
that do not neighbor any of the spins that are coupled by
Eq. 19. As before, the first and second terms are the bulk
toric code couplings. Ht,r is a tunneling interaction that
is localized at the coincident site r ∈ C. The tunneling
term Ht,r is defined analogously to Ht,d in Eq. 18.

From our previous analysis, we know that Ht,r con-
stitutes a localized bi-genon defect that allows anyons
to pass from one layer to the other. All terms in Eq.
20 commute with each other, and the ground state can
be found by individually minimizing each term. As be-
fore, we can interpret the ground state of Eq. 20 as a
condensate of contractible closed loops of the bulk toric
code anyons. Due to the bi-genon defects, these loops
may pass from one layer to the other. Since there is a
bi-genon located at each of the coincident sites (r ∈ C)
of the twisted bilayer, Eq. 20 can be interpreted as two
copies of toric code, which are coupled by a super-lattice
of bi-genons. The bi-genons form a triangular lattice for
SE-odd twist angles, and a hexagonal lattice for SE-even
twist angles. As noted previously, there are two types of
bi-genon defects in the bilayer system. Those that take
e anyons to e anyons and m anyons to m anyons (which
will be referred to as “ee” defects) and those that take e
anyons to m anyons and m anyons to e anyons (which will
be referred to as “em” defects). For SE-odd twist angles,
the ee and em each form one of the two inter-penetrating
rectangular lattices that make up the triangular lattice.
For SE-odd twist angles, the ee and em each form one of
the two inter-penetrating triangular lattices that make
up the hexagonal lattice. This can be confirmed from
Eqs. 10 and 11, and by noting that since the e and m
anyons are defined on alternating rows of plaquettes of
the honeycomb lattice, translating a single lattice layer
by a1 or a2 (see Fig. 1) exchanges the e and m anyons
on that layer.

A key feature of this bi-genon super-lattice is that each
bi-genon allows for two new types of non-contractible
anyon loops. First, there are the non-contractible anyon
loops that remain on a given layer and encircle a bi-
genon. Second, there are the non-contractible anyon
loops that pass from one layer to the other through a
bi-genon, and then return to the original layer through
a different bi-genon. These non-contractible anyon loops
are shown in Fig. 7. The operators that create these
non-contractible anyon loops commute with Eq. 20, and
make up the non-trivial low energy degrees of freedom
of the theory. In general, these non-contractible anyon
loops do not commute with each other, and they form
a non-trivial algebra. Because of this, it can be shown
that each bi-genon increases the ground state degeneracy

Figure 7: A pair of lattice defects that allow anyons from one
layer to pass through to the other layer. Here we indicate the
presence of a new pair non-contractible paths caused by the

defects.

of the system by a factor of 426. For a system of area A
and a density of bi-genons ρ, the ground state degeneracy
due to the bi-genons is 4ρA.

IV. THE MOIRÉ ISING MODEL

We now turn our attention to the low-energy dynam-
ics associated with the defect lattice from Sec. III D. As
noted before, non-contractible anyon loops make up the
zero energy, non-trivial, degrees of freedom of the cou-
pled bilayers in Eq. 20. We are interested in finding the
effective Hamiltonian for these anyon loops. To imbue
these loops with dynamics, we will include the following
perturbation to the bilayer system,

Hmag = −
∑
i

[hσ̄x↑,i + hσ̄y↑,i + hσ̄z↑,i] + (σ̄↑ ↔ σ̄↓),(21)

where |h| is significantly smaller than all other energy
scales in Eq. 20. In the presence of Eq. 21, anyon
loops can be dynamically created by virtual processes
where pairs of anyons are created and annihilated, form-
ing closed anyon loops. The amplitude to create a given
anyon loop will be proportional to (h/Egap)l, where, Egap

is the energy gap of the anyon, and l is the length of
the loop in units of the lattice constant. At this point,
we would like to note a difference between the e and m
anyons and the ψ anyons in toric code (Eq. 3 and 4). In
the lattice model, both the e and m anyons have a gap of
2Jeff. Since the ψ anyon is a fusion of an e anyon and an
m anyon, it has a gap of 4Jeff. The amplitude to create
a loop of ψ anyons is thereby reduced by a factor of 1/2l,
compared to a loop of e or m anyons of the same length.
Due to this extra suppression we will ignore processes
that create, ψ anyon loops.

The leading contributions to the effective Hamiltonian
will therefore come from short non-contractable loops
of e and m anyons. The four shortest types of non-
contractible loops are: loops that encircle a single ee
defect, loops that pass through a neighboring pair of ee
defects, loops that encircle a single em defect, and loops
that pass through a neighboring pair of em defects. Since
all anyon loops of the first type and second type commute
with all anyon loops of the third type and fourth type,
the ee and em defects decouple at leading order. Because
of this, we will only consider a single type of defect for
our analysis. Without loss of generality we will chose to
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focus on the ee defects. The analysis for the em defects
is identical.

In terms of the creation and annihilation operators for
the anyon loops, the effective Hamiltonian for the ee de-
fect lattice is given by

Hdefect =−
∑
i

(ueiW
e
i + umi W

m
i )

−
∑
〈ij〉

(teijW
e
ij + tmijW

m
ij ), (22)

where i labels the position of an ee defect in the lattice,
and 〈ij〉 indicates a neighboring pair of defects. The

operator W
e(m)
i creates a loop of e(m) anyons that sur-

rounds the ith defect. The operator W
e(m)
ij creates a loop

of e(m) anyons that passes from one layer to the other
through the defect at site i and returns to the original

layer through the defect at site j. The coupling u
e(m)
i

is the amplitude to create an e(m) loop around the ith

defect, and t
e(m)
ij is the amplitude to create an e(m) loop

that passes through the ith and jth defects. The defect
Hamiltonian is summarized in Fig. 8. The values of

u
e(m)
i and t

e(m)
ij depend the twist angle between the bi-

layers and on positions of the ith and jth defects. The
dependence of the coupling constants on position is due
to two features of the Kitaev bilayer system. First, since
we are in the Abelian phase of the Kitaev model, we have
explicitly broken rotational symmetry (Jz � Jx, Jy). As
a result, the Ising couplings can be anisotropic. Second,
as noted before, the e and m anyons of the Kitaev model
are defined on alternating rows of hexagonal plaquettes.
This extra periodic structure can lead to both the Ising
couplings and the transverse magnetic field terms being
periodic with period-2. We see both of these effects when
considering explicit examples in Appendix A.

Using the braiding relationships between the e and m
anyons, we find that the loop operators obey the commu-
tation relationships {W e

i ,W
m
ij } = {W e

j ,W
m
ij } = 0, and

{Wm
i ,W

e
ij} = {Wm

j ,W
e
ij} = 0. All other loop opera-

tors commute. Additionally, since the e and m anyons
are both their own anti-particle, the anyon loops satisfy
(W e

i )2 = (Wm
i )2 = (W e

ij)
2 = (Wm

ij )2 = 1. This algebra
is equivalent to having two spin-1/2 degrees of freedom
at each defect site. To show this, we will define two sets
of Pauli matrices at the defect site i: τ1,i and τ2,i. The
anyon loop algebra can then be satisfied by the follow-
ing identifications: W e

i = τx1,i, W
m
i = τx2,i, W

m
ij = τz1,iτ

z
1,j

and W e
ij = τz2,iτ

z
2,j . The defect lattice can then be treated

as a lattice system with two spins-1/2s per site. In terms
of the new spin degrees of freedom, Eq. 22 is

Hdefect = −
∑
i

(uei τ
x
1,i + umi τ

x
2,i)

−
∑
〈ij〉

(teijτ
z
2,iτ

z
2,j + tmij τ

z
1,iτ

z
1,j), (23)

which includes all leading order contributions to the dy-
namics of the ee defect lattice. Eq. 23 can be readily

Figure 8: A square lattice of ee defects (white) that form a
rectangular sublattice of an underlying triangular lattice. The
nontrivial e (red) and m (blue) anyon loops are shown. These

loops can either circle a defect (W e
a and Wm

b ) or pass through a
neighboring pair of defects (W e

cf and Wm
dg).

identified as two decoupled quantum Ising models. There
will be another two Ising models arising from the em de-
fects, leading to a total of four decoupled Ising models.

As noted before, the Ising couplings (t
e(m)
ij ) and trans-

verse magnetic field terms (u
e(m)
i ) in Eq. 23 both depend

on position.
In Appendix A we explicitly analyze Eq. 23 when

the twist angle is given by (m, r) = (1, 1) and when the
twist angle is given by (m, r) = (2, 1). We find that for
the (m, r) = (1, 1) twist angle both the τ1 and τ2 spins
are in a ferromangetic phase, where 〈τz1,i〉 = ±1, and
〈τz2,i〉 = ±1. This leads to a total of four groundstates for
the ee defect sector. There are also another four ground
states arising from the em defects for a total of 4×4 = 16
ground states for the entire defect lattice system. For
(m, r) = (2, 1) twist angle, both the τ1 and τ2 spins are
in a paramagnetic phase where 〈τx1,i〉 = 〈τx2,i〉 = 1, and
the ground state of the system of ee defects is unique.
The ground state is also unique for the system of em
defects, and so ground state of the entire defect lattice
system is unique for the (m, r) = (2, 1) twist angle. In
this analysis, we have used the fact that to leading or-
der, the ee and em defect lattices decouple. We consider
subleading terms that couple the ee and em defect sec-
tors in Appendix B. In particular we find that for the
(m, r) = (1, 1) twist angle, subleading couplings between
the ee and em defects reduce the number of ground states
from 16 to 8.

Since the effective Ising spins correspond to non-
contractible anyon loops, the magnetization order param-
eters that characterize the ground state of the effective
Ising models in Eq. 23 are extended spin operators in
terms of the original Kitaev degrees of freedom. These
extended spin operators are the product of a finite num-
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ber of spin operators (σ↑,r and σ↓,r in Eq. 6) that act
on different sites of the bilayer system. Because of this,
one would have to simultaneously measure multiple spins
in the bilayer system in order to measure the effective
Ising order parameter, which may be challenging exper-
imentally, but could likely be carried out as a numerical
diagnostic.

This example demonstrates the non-trivial effect of the
twist angle on the the emergent spin model. In gen-
eral, the defects will be further apart from each other
for smaller twist angles. This will suppresses the ampli-
tude to create a loop that connects neighboring defects
(teij and tmij in Eq. 22). On the other hand, the distance
around a given defect is independent of the twist angle,
and the amplitude to create a loop that encirlces a given
defect (uei and umi in Eq. 22) will not be suppressed as
the twist angle is decreased. Based on this, we expect
that at small twist angles the uei and umi terms will dom-
inate in 23, and the emergent Ising models will be in a
trivial paramagnetic phase.

V. CONCLUSION AND OUTLOOK

We have shown that coupling twisted Kitaev model
bilayers can lead to new emergent physics at low ener-
gies. At commensurate twist angles, coupling coincident
spins in the two layers generates a lattice of bi-genon
defects. These bi-genons allow anyons to pass from one
layer to the other, and lead to a ground state degeneracy
that is exponential with system size. This ground state
degeneracy can be split by applying a weak magnetic
field to the system. The resulting low energy physics is
well described by four 2D quantum Ising models. Fur-
thermore, we have shown that at large twist angles, the
emergent Ising models are in a ferromagnetic phase, and
at small twist angles, the Ising models are in a param-
agnetic phase. In this analysis, we have only explicitly
considered SE-odd twist angles. The results for SE-even
twist angles are analogous.

It may be of interest to extend this procedure to the
non-Abelian phase of the Kitaev model. In doing so we
hope to be able to describe the low energy physics that
may be found in twisted versions of proposed Kitaev ma-
terials such as α-RuCl3. However, for α-RuCl3 the inter-
layer distance is large, and the strong coupling approach
we used here may not apply. Our methodology may also
prove useful in analyzing heterostructures of spin liquids
where the lattices of the two layers are mismatched32. In
lattice mismatched heterostructures, a moiré pattern and
superlattice can also form, and our results would be ap-
plicable. The approach we have used here may provide
insight into the low energy excitations that have been
found in the random Kitaev magnet CU2IrO3

33. It may
also be of interest to study other topologically ordered
systems where a super lattice of twist defects has been
added. To our knowledge, the dynamics associated with
such a system have not yet been explored.
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Appendix A: The Moiré Ising Model at (m, r) = (1, 1)
and (m, r) = (2, 1) Twist Angles

We will now explicitly consider two cases of the Moiré
Ising model found Sec. IV. First, when the twist angle
is given by (m, r) = (1, 1) (θ(1, 1) ≈ 21.79o), and second,
when the twist angle is given by (m, r) = (2, 1) (θ(2, 1) =
13.17o).

The (m, r) = (1, 1) twist angle is SE-odd and the
aligned spins form a triangular lattice. As stated be-
fore, there are two types of bi-genon defects for the
(m, r) = (1, 1) twist pattern, ee and em defects. The ee
and em defects each make up a rectangular sub-lattice of
the triangular super-lattice (see Fig. 9). Since the ee and
em defects do not couple to each other at leading order,
we will only consider the rectangular lattice of ee defects.
We will label the primitive vectors of the ee defect lattice
as x̂ and ŷ as shown in Fig. 9. Using the same logic as
before, the Hamiltonian for the ee defects is given by Eq.
23 where i and j label the positions of the ee defects in
the (m, r) = (1, 1) defect lattice. For our purposes, it will
be useful to rewrite Eq. 23 as

Hdefect = −
∑
i

(uei τ
x
1,i + umi τ

x
2,i)

−
∑

〈ij〉∈x

(te,⊥ij τz2,iτ
z
2,j + tm,⊥ij τz1,iτ

z
1,j)

−
∑

〈ij〉∈y

(t
e,‖
ij τ

z
2,iτ

z
2,j + t

m,‖
ij τz1,iτ

z
1,j), (A1)

where 〈ij〉 ∈ x indicates nearest neighbor pair of ee de-
fects in the x̂-direction, and 〈ij〉 ∈ y indicates nearest
neighbor pair of defects in the ŷ-direction. All coupling
constants in Eq. 23 are positive, and their approximate
magnitudes are given in Table I. We note that these cou-
plings are anisotropic, and additionally are periodic with
period-2.

From Table I, it is clear that for (m, r) = (1, 1), the

te,⊥ij and tm,⊥ij couplings are smaller than all other terms
in the effective Hamiltonian, and can be treated as per-
turbations. In the absence of the intercolumn couplings,
each column of Eq. A1 consists of two decoupled Ising
chains oriented along the ŷ-direction. The Hamiltonian
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for a single column, which we will label as I, is given by

HI = −
∑
i∈I

[
uei τ

x
1,i + t

m,‖
i,i+ŷτ

z
1,iτ

z
1,i+ŷ

umi τ
x
2,i + t

e,‖
i,i+ŷτ

z
2,iτ

z
2,i+ŷ

]
,

(A2)

where the sum is only over the spins in the column I.

Since the magnitudes of u
e/m
i , and t

e/m,‖
ij , all alternate

with period 2, Eq. A2 consists of a pair of period-2 Ising
chains. Period- p Ising chains have been previously stud-
ied by Derzhko et al.34,35, and their phase diagrams are
known. Using their results, we find that for Eq. A2,
the τ1 spins of the column I are in a trivial paramag-

netic phase if
∏
i∈I t

m,‖
i,i+ŷ <

∏
i∈I u

e
i , and a symmetry

broken ferromagnetic phase if
∏
i∈I t

m,‖
i,i+ŷ >

∏
i∈I u

e
i . In

the paramagnetic phase, 〈τx1,i〉I = 1, (〈...〉I indicates an
average taken over the spins in the column I) and in
the ferromangetic phase 〈τz1,i〉I = ±1. Similarly, the
τ2 spins of the I column are in a paramagnetic phase

if
∏
i∈I t

e,‖
i,i+ŷ <

∏
i∈I u

m
i , and a ferromagnetic phase if∏

i∈I t
e,‖
i,i+ŷ >

∏
i∈I u

m
i . Using Table I, we find that both

the τ1 and τ2 spins in column I are in the ferromag-
netic phase for the (m, r) = (1, 1) twist angle (recall that
J1,2 � Jeff ).

We will now consider the effects of the sub-leading te,⊥ij
and tm,⊥ij terms in Eq. A1. As we have shown, in the

absence of te,⊥ij and tm,⊥ij , the τ1 spins of each column
are ferromagnetically aligned, as are the τ2 spins. It is
then straightforward to see that the energy associated

with tm,⊥ij is minimized when the τ1 spins on neighboring
columns are ferromangetically aligned as well. Similarly,

the energy associated with te,⊥ij is minimized when the τ2
spins on neighboring columns are also aligned. Because
of this, in the ground state of Eq. A1, all τ1 spins will be
ferromangetically aligned (〈τz1,i〉 = ±1) and all τ2 spins
will be ferromangetically aligned (〈τz2,i〉 = ±1). This will
result in a total of 4 ground states for the lattice of ee
defects. The analysis for the em defects is identical, and
the system of em defects also has 4 ground states for the
same reasons. There will thereby be a total of 4×4 = 16
ground states for the system.

We will now turn our attention to the (m, r) = (2, 1)
twist angle. Similar to the (m, r) = (1, 1) twist angle, the
(m, r) = (2, 1) twist angle forms SE-odd super-lattice,
which is shown in Fig 10. We will analyze this system
in the same way that we analyzed the (m, r) = (1, 1)
system. As with the (m, r) = (1, 1) twist angle, the ee
and em defects of the (m, r) = (2, 1) twist angle each
make up a rectangular sub-lattice. The Hamiltonian for
the rectangular lattice of ee defects takes the same form
as Eq. A1, where i and j now label the positions of
the ee defects in the (m, r) = (2, 1) defect lattice. For
(m, r) = (2, 1) all coupling constants are positive, and
the approximate magnitude of the coupling constants at
this twist angle are given in Table II. These couplings are
also anisotropic and are periodic with period-2.

Figure 9: The defect lattice for the (m, r) = (1, 1) twist angle.
There are two types of defects, ee and em, each of which form a

rectangular lattice with primitive vectors x̂ and ŷ.

Coupling constants for the (m, r) = (1, 1) twist angle

ue
i ∼ h4

J2
eff

J2
for i even

∼ h6

J5
eff

for i odd

um
i ∼ h6

J5
eff

for i even

∼ h4

J2
eff

J2
for i odd

t
e,‖
ij ∼ h3

J1J2
for i even

∼ h7

J5
eff

J1
for i odd

t
m,‖
ij ∼ h7

J5
eff

J1
for i even

∼ h3

J1J2
for i odd

tm,⊥
ij ∼ h9

J5
eff

J1J2J3
for all i

te,⊥ij ∼ h9

J5
eff

J1J2J3
for all i

Table I: The perturbative values of the coefficients used in Eq.
22 for the (m, r) = (1, 1) twist angle. The lattice site i = (x, y) is
even when x+ y = 0 mod(2) and odd when x+ y = 1 mod(2).

Figure 10: The defect lattice for the (m, r) = (2, 1) twist angle.
There are two types of defects,ee and em, each of which form a

rectangular lattice with primitive vectors x̂ and ŷ.
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Coupling constants for the (m, r) = (2, 1) twist angle

ue
i ∼ h4

J2
eff

J2
for i even

∼ h6

J5
eff

for i odd

um
i ∼ h6

J5
eff

for i even

∼ h4

J2
eff

J2
for i odd

t
e,‖
ij ∼ h5

J2
eff

J2
2

for i even

∼ h9

J7
eff

J1
for i odd

t
m,‖
ij ∼ h9

J7
eff

J1
for i even

∼ h5

J2
eff

J2
2

for i odd

te,⊥ij ∼ h15

J13
eff

J1
for all i

tm,⊥
ij ∼ h15

J13
eff

J1
for all i

Table II: The perturbative values of the coefficients used in Eq.
22 for the (m, r) = (2, 1) twist angle. The lattice site i = (x, y) is
even when x+ y = 0 mod(2) and odd when x+ y = 1 mod(2).

As before, the couplings te,⊥ij and tm,⊥ij for the (m, r) =

(2, 1) twist angle are subleading, and we can treat them

as perturbations. When te,⊥ij = tm,⊥ij = 0, we can again
consider the Hamiltonian for a single column of spins
(see Eq. A2). For the (m, r) = (2, 1) twist angle, we

find that for each column I,
∏
i∈I t

m,‖
i,i+ŷ <

∏
i∈I u

e
i and∏

i∈I t
e,‖
i,i+ŷ <

∏
n u

m
i . Following the same logic as before,

the τ1 and τ2 spins of each column will be in the para-
magnetic phase. Since the spins of each column are in
the paramagnetic phase, 〈τx1,i〉 = 〈τx2,i〉 = 1 for all spins
in the system, and the ground state is unique. It is clear

that the weak ferromagnetic couplings, te,⊥ij and tm,⊥ij are
irrelevant here. The same analysis also applies to the em
defects of the (m, r) = (2, 1) twist angle. So the ground
state of the entire system is unique.

Appendix B: Subleading Corrections to the Defect
Hamiltonian

Here we will consider subleading corrections to the ef-
fective Hamiltonian for the defect lattice Eq. 22 (equiva-
lently Eq. 23). In our initial analysis, we only considered
operators that create short e and m anyon loops. In this
limit, the ee and em defects decouple. Here, we will con-
sider subleading terms that couple the ee and em defects.
We will also consider the effects of including terms that
create ψ anyon loops. To analyze these subleading con-
tributions we will need to consider both the ee and em
defects. To this end, we will define two new types of
anyon loop creation operators. First we will define the

operator W̄
e(m)
k that creates an e(m) anyon loop on the

top layer around the em defect at site k. It is important
to note that since the defect at site k is an em defect, an
e(m) anyon loop around the kth defect on the top layer is
equivalent to an m(e) anyon loop around the kth defect

on the bottom layer. Second, there is the operator W̄
e(m)
kl

that creates an e(m) anyon string on the top layer that
passes through the em defect at site k and becomes a
m(e) anyon string on the bottom layer and then returns
to the top layer through the em defect at site l to form
a closed loop. The leading order Hamiltonian for the ee
and em defects is then given by

Hdefect =−
∑
i∈ee

(ueiW
e
i + umi W

m
i )

−
∑

〈ij〉∈ee

(teijW
e
ij + tmijW

m
ij )

−
∑
k∈em

(ūekW̄
e
k + ūmk W̄

m
k )

−
∑

〈kl〉∈em

(t̄eklW̄
e
kl + t̄mklW̄

m
kl ),

(B1)

where the first two sums are over the sites of the ee de-
fects, and the second two sums are over the sites of the em

defects. The operators W
e(m)
i and W

e(m)
ij , and couplings

u
e(m)
i and t

e(m)
ij are defined as in Eq. 22. The coupling

ū
e(m)
k is the amplitude to create an anyon loop around

the kth em defect, and t̄
e(m)
kl is the amplitude to create

an anyon loop the passes through the kth and lth em
defects. The non-trivial commutation relationships for
the new anyon loop creation operators are {W̄ e

k , W̄
m
kl } =

{W̄ e
l , W̄

m
kl } = 0, and {W̄m

k , W̄
e
kl} = {W̄m

l , W̄
e
kl} = 0. If

we define two new sets of Pauli matrices τ̄1 and τ̄2, we
can satisfy the new anyon loop algebra with the following
identifications: W̄ e

k = τ̄x1,k, W̄m
k = τ̄x2,k, W̄m

kl = τ̄z1,k τ̄
z
1,l

and W̄ e
kl = τ̄z2,k τ̄

z
2,l. Using this, Eq. B1 can be converted

into four Ising models:

Hdefect =−
∑
i∈ee

(uei τ
x
1,i + umi τ

x
2,i)

−
∑

〈ij〉∈ee

(teijτ
z
2,iτ

z
2,j + tmij τ

z
1,iτ

z
1,j)

−
∑
k∈em

(ūek τ̄
x
1,k + ūmk τ̄

x
2,k)

−
∑

〈kl〉∈em

(t̄eklτ̄
z
2,k τ̄

z
2,l + t̄mklτ̄

z
1,kτ

z
1,l),

(B2)

where τ1 and τ2 are defined as in Eq. 23. From our analy-
sis in Appendix A, we know that each Ising model will be
in one of two phases: a symmetry broken ferromagnetic
phase, and a trivial paramagnetic phase. For example,
〈τz1,i〉 = ±1 when the τ1 Ising spins are in the ferromag-
netic phase and 〈τx1,i〉 = 1 when the τ1 Ising spins are in
the paramagnetic phase.

We will now discuss several types of subleading correc-
tions to Eq. B2. First, there are the contributions coming
from processes that create an anyon loops that encircle
both an ee and an em defect. An operator that creates
such an anyon loop can be decomposed into the product
of an operator that creates an anyon loop around an ee
defect, an operator that creates an anyon loop around
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an em defect, and a trivial operator that creates a con-
tractible loop that can be ignored. Second, there are the
contributions coming from processes that create anyon
loops that pass through both a pair of ee defects and
a pair of em defects. An operator that creates such an
anyon loop can be decomposed into the product of an
operator that creates an anyon loop that passes through
a pair of ee defects, an operator that creates an anyon
loop that passes through a pair of em defects, and a triv-
ial operator that creates a contractible anyon loop that
can also be ignored.

The contributions to the effective Hamiltonian from
these operators are (in terms of the Ising spins):

Hint =−
∑
i∈ee

∑
k∈em

[
q11
ik τ

x
1,iτ̄

x
1,k + q12

ik τ
x
1,iτ̄

x
2,k

+ q21
ik τ

x
2,iτ̄

x
1,k + q22

ik τ
x
2,iτ̄

x
2,k

]
−
∑

〈ij〉∈ee

∑
〈kl〉∈em

[
g11
ijklτ

z
1,iτ

z
1,j τ̄

z
1,k τ̄

z
1,l

+ g12
ijklτ

z
1,iτ

z
1,j τ̄

z
2,k τ̄

z
2,l + g21

ijklτ
z
2,iτ

z
2,j τ̄

z
1,k τ̄

z
1,l

+ g22
ijklτ

z
2,iτ

z
2,j τ̄

z
2,k τ̄

z
2,l

]
.

(B3)

Here, the q couplings are the amplitudes to create a given
anyon loop that encircles both an ee and em defect, and
the g couplings are the amplitudes to create a given anyon
loop that passes through a pair of ee defects and a pair
of em defects. Since these effects are subleading, we can
consider their effect on the ground states of Eq. B2.
When the spins are in a ferromagnetic ground state, the q
coupling is irrelevant, since it flips two pairs of spins. The
g coupling in the ferromagnetic phase simply shifts the
ground state energy, since 〈τz1/2,iτ

z
1/2,j〉 = 〈τ̄z1/2,k τ̄

z
1/2,l〉 =

1. Similarly, in the paramangetic phase, the g coupling
is irrelevant, and the q coupling shifts the ground state
energy. We can thereby conclude that these subleading
terms in Eq. B3 only shift the energy of the ground states
of Eq. B2.

There are also additional subleading terms due to the
ψ anyon loops. Processes that create ψ anyon loops were
initially ignored since the ψ anyons have a larger excita-
tion gap in the Kitaev honeycomb model than the e and
m anyons. Due to the fusion rule e ×m = ψ, the oper-
ators that create ψ anyon loops can be decomposed into
the product of an operator that creates an e anyon loop
and an operator that creates an m anyon loop. For in-
stance, the operator that creates a ψ anyon loop around

the ith defect can be written as Wψ
i ≡ W e

i W
m
i . As be-

fore, we are interested in two types of processes: those
that create a ψ anyon loop around a defect, and those
that create a ψ anyon loop that passes through a pair
of defects. It is important to note that a ψ anyon re-

mains a ψ anyon after passing through a em defect, since
ψ = e×m → m× e = ψ. This means that there is a fi-
nite amplitude to create a ψ anyon loop that passes from
one layer to another through an ee defect, and returns to
the first layer through an em defect. We thereby have to
consider processes where a ψ anyon loop passes through
a pair of ee defects, a pair of em defects, and a single
ee and a single em defect. Including these process, the
effective Hamiltonian for the ψ anyon loops in terms of
the Ising spins is

Hψ =−
∑
i∈ee

uψi τ
x
1,iτ

x
2,i −

∑
〈ij〉∈ee

tψijτ
z
2,iτ

z
2,jτ

z
1,iτ

z
1,j

−
∑
k∈em

ūψk τ̄
x
1,k τ̄

x
2,k −

∑
〈kl〉∈em

t̄ψklτ̄
z
2,k τ̄

z
2,lτ̄

z
1,kτ

z
1,l

−
′∑

〈ik〉

t̃ψikτ
z
1,iτ

z
2,iτ̄

z
1,kτ

z
2,k.

(B4)

The coupling uψi (ūψk ) creates a ψ anyon loop around the

ith (kth) ee (em) defect, and tψij (t̄ψkl) creates a ψ anyon

loop that passes through the i and j (k and l) ee (em)
defects. The primed sum is over neighboring defect sites
i and k, where i is an ee defect, and k is an em defect.

The coupling t̃ψik is the amplitude to create a ψ anyon

loop that passes through the ith ee defect and the kth

em defect.
The uψi and tψij couplings turn the two original decou-

pled τ1 and τ2 Ising models in Eq. B2 into a 2D quantum

Askin Teller model36. Similarly, the ūψi and t̄ψij couplings
turn the two original decoupled τ̄1 and τ̄2 Ising models
into a second 2D quantum Ashkin-Teller model. We will
now consider the effects of these weak Ashkin-Teller cou-
plings on the ground state of Eq. B2. When the τ1 and

τ2 spins are in the paramagnetic phase, the tψij coupling

is irrelevant, and the uψi coupling shifts the ground state
energy. When the τ1 and τ2 spins are in the ferromag-

netic phase, the uψi coupling is irrelevant, and the tψij
coupling shifts the ground state energy. So the uψi and

tψij terms simply change the ground state energy of the

Ising models. The analysis for ūψi , and t̄ψij is identical.

The contributions from the t̃ψik coupling, however, are
non-trivial when the Ising spins are in the ferromagnetic
phase. To see this, we note that in the ferromangetic
phase of Eq. B2, 〈τz1,i〉 = ±1, 〈τz2,i〉 = ±1, 〈τ̄z1,k〉 = ±1,

〈τ̄z1,k〉 = ±1, leading to 16 ground states. The t̃ψik term in
Eq. B4 lowers the energy of ground state configurations
where 〈τz1,iτz2,iτ̄z1,k τ̄z2,k〉 = 1. It can readily be verified that
this reduces the number of ground states from 16 to 8.

In the paramagnetic region, the t̃ψik term is irrelevant.
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